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Abstract

The accurate estimation of the Gestational Age (GA) in
fetal development studies has the potential to detect health
issues at early stages of pregnancy. In this article, we
adopt the Support Vector Machine (SVM) tool to investi-
gate whether gold standard GA can be reliably estimated
by using maternal as well as fetal Heart Rate Variability
(HRV) features. The study considered Electrocardiogram
(ECG) signals from 60 pregnant women. Maternal and
fetal HRV parameters were calculated, and SVM regres-
sion with the linear kernel function was utilized to produce
a robust estimate of fetal age. By evaluating the cross-
validation performances, we found that maternal electro-
physiological parameters contribute to the correct estima-
tion of the GA. Results showed that the linear kernel main-
tains better performance over the radial basis function ker-
nel in the SVM-based regression models. Compared with
gold standard GA identified by CRL, the proposed model
resulted in an error of 5.11 weeks, Bland–Altman esti-
mated bias of -0.31 weeks and limits of agreement of 8.97
and -9.59 weeks, and Pearson correlation coefficient of
0.63. It can be speculated that the fetal GA can be more re-
liably estimated when incorporating maternal along with
fetal HRV parameters using 1 min of ECG signals.

1. Introduction

The estimation error when using the Crown-Rump
Length (CRL) to measure the Gestation Age (GA) of the
fetus can reach up to 7 days [1]. Some of the challenges
associated with CRL can include human errors and the re-
quirement to have good clinical practice [2]. Such require-
ments, however, might not be feasible in some settings, and

it is thus required to have an approach that is more robust
when estimating the GA while mitigating the challenges.

It is reported that fetal growth can be estimated using
the Fetal Heart Rate (FHR) and its variability [3]. One ad-
vantage of this method is that it can be applied without the
need for heavy training nor expensive equipment. This is
essential for countries that have limited resources [4]. In
early pregnancies, the estimated GA from FHR has been
compared with that of the CRL method in an early study,
which showed insignificant differences [5]. However, this
study did not take into account maternal physiological fac-
tors, such as the Heart Rate Variability (HRV).

Our previous studies [6, 7] showed that fetal and ma-
ternal Heart Rate (HR) coupling strengths as well as fetal
and maternal HRV features are important when estimat-
ing the GA. Generalized linear regression has been used
as the adopted methodology in that study. However, it is
interesting to apply new technologies when assessing fetal
development to improve fetal GA estimation accuracy.

The Machine Learning (ML) framework [8] was em-
ployed in [9] to predict fetal GA based on ultrasound brain
image appearance. Of the various types of ML models,
Support Vector Machine (SVM) has been a popular choice
in small samples setting [10]. For example, [11] used
SVM to develop a large-for-gestational-age classification
system. There have been no studies, however, that uti-
lize SVM together with fetal and maternal HRV features
for GA estimation in fetal development studies, which is a
fundamental aspect in fetal neurological screening and an
essential information for reducing fetal deaths.

In this article, the SVM is utilized in a novel regression
approach for the estimation of the GA by using mater-
nal and fetal HRV features computed from ECG abdom-
inal signals of 60 pregnant women with a recording length
of 1 min, which is potentially easy to obtain in limited
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resources clinical settings. To determine a final model,
the model utilizes the SVM tool in conjunction with the
nonparametric linear kernel. An essential point that this
study reveals is the important contribution of fetal along
with maternal HRV parameters to estimate the fetal de-
velopment in a correct manner. We refer to the proposed
model as the Support Vector Machine estimator with the
Linear kernel based on fetal and maternal HRV parameters
(i.e. the SVML-MF estimator).

The proposed SVML-MF estimator is compared with
that of other models that also use the SVM tool with the
linear kernel, but are based on either maternal or fetal HRV
features. For completion, comparisons are carried out with
three other SVM models that are based on the same cate-
gories of HRV features (i.e. maternal, fetal, and maternal-
along-with-fetal), but use the Radial Basis Function (RBF)
kernel function (instead of the linear kernel).

2. Methods

2.1. Processing of Participants ECG Dataset

The dataset consists of abdominal ECGs from
60 healthy pregnant women in Japan and the USA. The
Institutional Review Boards (IRB: 2015-2-80-1) have ap-
proved the study protocols with appropriate institutional
agreements. Abdominal signals with 12 channels were
recorded for 10 min [12], and sampled using 16 bit res-
olution for 1 ms. The fetal ECG had been separated from
the abdominal composite signal using maternal ECG can-
cellation in combination with blind source separation with
a reference as reported in [13]. A MATLAB routine pro-
gram has been customized to detect the fetal and maternal
QRS peak locations.

2.2. Heart Rate Variability

Time-domain HRV parameters include the Standard De-
viation of NN intervals in Maternal or Fetal HR (MS-
DNNHR or FSDNNHR), Root Mean Square of Succes-
sive Differences between normal Maternal or Fetal heart-
beats (MRMSSDHR or FRMSSDHR), and Mean value of
Maternal or Fetal HR (MMHR or FMHR). These metrics
were evaluated from RR intervals of 1 min length of the
recorded ECG signals, which may be sufficient to correctly
measure such variables for healthy individuals as long as
artifacts are carefully removed [14]. In addition, it is po-
tentially easy and more practical to record 1 min duration
of ECG signals in limited resources clinical settings. Due
to the article length limitation, scatterplots of the mean val-
ues of maternal and fetal HR are shown here only (Fig. 1).
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Figure 1. Scatterplots of the mean values of heart rate for
the: (a) mother (MMHR), and (b) fetus (FMHR).

2.3. SVM Regression Models and Statistics

The proposed SVM-based model (i.e. SVML-MF) uses
the linear kernel and combines maternal and fetal HRV
parameters. Five other SVM-based models are devel-
oped based on different combinations of fetal and mater-
nal HRV features, and use the linear kernel (SVML-MF,
SVML-M and SVML-F) or the RBF kernel (SVMRBF-
MF, SVMRBF-M and SVMRBF-F). All the models were
generated using MATLAB’s fitrsvm.

Consider the training dataset that includes predictor
variables (x) of N observations and observed response val-
ues (y), that is

T =

{
(x1, y1), (x2, y2), . . . , (xN , yN )

}
,

where xi and yi ∈ Rn, and i ∈ {1, 2, . . . , N} [15].
The goal of the SVM regression algorithm is to produce
a function f(x) that deviates from y by a value no greater
than ε (defined within as half the width of the ε-insensitive
band) for each of the training points in x, and is as flat
as possible. This requires selecting an appropriate kernel
function (k(xi, xj)) and a penalty parameter of the error
term (C) to construct and find the solution to the problem

min
α

1

2

N∑
i=1

N∑
j=1

αi αj yi yj k(xi, xj) −
N∑
i=1

αi (1)

such that
N∑
i=1

αi yi = 0, where 0 ≤ αi ≤ C. Finding the
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optimal solution: α∗ = {α∗
1, α

∗
2, . . . , α

∗
N}. The next

step is to select a component 0 < α∗ < C and calculate

b∗ = yj −
N∑
i=1

α∗ yi k(xi, xj). The decision function

can now be constructed as

f(x) = sign

(
N∑
i=1

α∗
i yi k(x, xi) + b

)
. In this study,

two kernel functions are considered: linear and RBF.
The dataset (60 subjects) was divided randomly into two

halves to obtain the considered models. The two parts of
the dataset (i.e. Subjects#1–30 and Subjects#31–60) con-
sider the time segments of the fetal and maternal ECG sig-
nals to be different when preparing the testing and training
data. This is an essential step to overcome potential data
dependency and increase reproducibility. Fig. 2 shows a
flowchart of the SVM-based models.

When preparing the training data, the fetal and maternal
ECG signals were partitioned into ten divisions. The first
time segments of the ECGs were considered for half of the
dataset, and the last time segments were considered for the
other half. To prepare the testing data, all segments were
taken into consideration except the segments used in train-
ing. The results obtained using the testing dataset were av-
eraged to find one final result. This methodology has been
implemented to establish a balanced representation of the
dataset and avoid any systematic bias.

3. Results

The proposed models for estimating the GA against
gold standard age identified by CRL were validated using
the cross-validation scheme, and the estimation error was
measured by computing the mean Root Mean Square Er-
ror (mRMSE). Results are shown for the best performing
model only due to space limitations.

Table 1 lists the cross-validation results evaluated by
mRMSE, Pearson correlation coefficient (r), and Bland–
Altman results (bias and Limits of Agreement (LoA)
(±1.96×SD)) for the six introduced models. The model
that produced the lowest mRMSE value is the SVML-MF
estimator (5.11 weeks), and is hence the best performing
model. Fig. 3 illustrates the correlation (p < 0.05) between
the gold standard GA and estimated values by SVML-MF
estimator with an r value of 0.63. Additionally, the figure
shows the Bland–Altman plot which validates that the GA
values estimated by the best performing model are within
the LoA (8.97 and -9.59 weeks), and that the bias (i.e. es-
timated mean differences) is -0.31 weeks.

Table 2 lists the correlation results (r) between the dif-
ferent combinations of maternal and fetal HRV features.
Although MMHR has no relationship (p < 0.05) with the
GA individually (see Fig. 2), there exists a relationship
(p < 0.05) between MMHR and FMHR.

Figure 2. Flowchart for the proposed SVM-based models.
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Figure 3. (a) Pearson correlation, and (b) Bland–Altman.

4. Discussion

This study has successfully demonstrated that the SVM
model with linear kernel function based on both of mater-
nal and fetal HRV features computed from recorded ECG
abdominal signals for 1 min could estimate the GA more
reliably than that of similar models with either maternal or
fetal HRV features. The model combined fetal in conjunc-
tion with maternal HRV features rather than fetal features
only, which highlights the importance and significance of
maternal cardiac factors on the development of the fetal.

The proposed SVML-MF model produced higher values
of r. This can be speculated due to HRV features being
linear. Additionally, the overall cross-validation error is
less than that compared to the other SVM-based models.
The value of ε for all six models is equal to 0.82. It is
interesting to implement an algorithm for selecting the best
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Table 1. Cross-validation performance evaluated by mRMSE Pearson correlation coefficient (r), and Bland–Altman results

Kernel Type Maternal-based Fetal-based Maternal and Fetal
(SVML-M) (SVMRBF-M) (SVML-F) (SVMRBF-F) (SVML-MF) (SVMRBF-MF)

mRMSE (weeks) 5.97 5.98 5.17 5.57 5.11 5.94
r 0.21 0.31 0.58 0.55 0.63 0.35
Bias (weeks) 0.02 -0.10 -0.26 -0.15 -0.31 -0.01
ULoA (weeks) 11.62 11.23 9.40 10.27 8.97 11.72
LLoA (weeks) -11.58 -11.43 -9.91 -10.57 -9.59 -11.73

feature subset for every model and observe the effect on the
values of ε and C. Moreover, the study requires additional
validation on a bigger sample size, and various lengths of
the recorded signals.

Table 2. Correlation between different combinations of
maternal and fetal HRV features (p < 0.05).

MMHR MSDNNHR MRMSSDHR
FMHR 0.39∗ 0.01 -0.10
FSDNNHR -0.01 0.05 0.07
FRMSSDHR -0.24 0 0.09

5. Conclusions

This article presented an approach for accurately esti-
mating the fetal GA by adopting the SVM algorithm with
the linear kernel function based on maternal and fetal phys-
iological parameters computed from recorded ECG signals
for 1 min. Interestingly enough, combining maternal along
with fetal HRV features could result in a more reliable es-
timation of the GA than that of similar models with either
maternal or fetal features. The study successfully showed
that using the linear kernel instead of the radial basis func-
tion kernel produces a proper estimate of GA, which is
likely due to HRV features being linear. Further research
work could consider the effect of abnormal cases of fetuses
on the estimation of GA for the various scenarios of heart
arrhythmias and anomalies.
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